设计模式 ---- 创建型模式

Scroll Down

设计模式介绍

设计模式是程序员在面对同类软件工程设计问题所总结出来的有用的经验,模式不是代码,而是某类问题的通用解决方案,设计模式(Design Pattern) 代表了最佳的实践。

设计模式类型

设计模式分为三种类型,共23种
1、创建型模式单例模式、抽象工厂模式、原型模式、建造者模式、工厂模式
2、结构型模式:适配器模式、桥接模式、装饰模式、组合模式、外观模式、享元模式、代理模式
3、行为型模式:模板方法模式、命令模式、访问者模式、迭代器模式、观察者模式、中介者模式、备忘录模式、解释器模式(Interporter模式)、状态模式、策略模式、责任链模式(职责链模式)

这里介绍创建型模式的几种设计模式。

单例模式

单例模式介绍

所谓类的单例设计模式,就是采取一定的方法保证在整个的软件系统中,对某个类只能存在一个对象实例,并且该类值提供一个取得其对象实例的方法(静态方法)
比如:Hibernate的SessionFactory,充当数据存储源的代理,并负责创建Session对象。

单例模式的八种方式

1、饿汉式(静态常量)
2、饿汉式(静态代码块)
3、懒汉式(线程不安全)
4、懒汉式(线程安全,同步方法)
5、懒汉式(线程安全,同步代码块)
6、双重检查
7、静态内部类
8、枚举

懒汉式(静态常量)

步骤:
1、构造器私有化(防止new)
2、类的内部创建对象
3、向外暴露一个静态的公共方法。getInstance
代码实现:

package singleton.type1;

public class SingletonTest01 {

	public static void main(String[] args) {
		//测试
		Singleton instance = Singleton.getInstance();
		Singleton instance2 = Singleton.getInstance();
		System.out.println(instance == instance2); // true
		System.out.println("instance.hashCode=" + instance.hashCode());
		System.out.println("instance2.hashCode=" + instance2.hashCode());
	}

}

//饿汉式(静态变量)

class Singleton {
	
	//1. 构造器私有化, 外部能new
	private Singleton() {
		
	}
	
	//2.本类内部创建对象实例
	private final static Singleton instance = new Singleton();
	
	//3. 提供一个公有的静态方法,返回实例对象
	public static Singleton getInstance() {
		return instance;
	}
	
}

优缺点说明:
1、优点:这种写法简单,就是在类装载的时候就完成实例化。避免了线程同步问题。
2、缺点:在类装载的时候就完成实例化,没有达到Lazy Loading的效果。如果从始至终从未使用过这个实例,则会造成内存的浪费
3、这种方式基于classLoader机制避免了多线程的同步问题,不过,instance在类装载时就实例化,在单例模式中大多数都是调用getInstance方法,但是导致类装载的原因有多种,因此不能确认有其他的方式(或者其他的静态方法)导致类装载,这时候初始化instance就没有达到lazy loading的效果
4、结论:这种单例模式可用,可能造成内存浪费

饿汉式(静态代码块)

代码:

package singleton.type2;

public class SingletonTest02 {

	public static void main(String[] args) {
		//测试
		Singleton instance = Singleton.getInstance();
		Singleton instance2 = Singleton.getInstance();
		System.out.println(instance == instance2); // true
		System.out.println("instance.hashCode=" + instance.hashCode());
		System.out.println("instance2.hashCode=" + instance2.hashCode());
	}

}

//饿汉式(静态变量)

class Singleton {
	
	//1. 构造器私有化, 外部能new
	private Singleton() {
		
	}
	

	//2.本类内部创建对象实例
	private  static Singleton instance;
	
	static { // 在静态代码块中,创建单例对象
		instance = new Singleton();
	}
	
	//3. 提供一个公有的静态方法,返回实例对象
	public static Singleton getInstance() {
		return instance;
	}
	
}

优缺点说明:
1、这种方式和上面的方式其实类似,只不过将类实例化的过程放在了静态代码块中,也是在类装载的时候,就执行静态代码块中的代码,初始化类的实例。优缺点和上面一下
2、结论:这种单例模式可用,但是可能造成内存浪费

懒汉式(线程不安全)

代码:

package singleton.type3;


public class SingletonTest03 {

	public static void main(String[] args) {
		System.out.println("懒汉式1 , 线程不安全~");
		Singleton instance = Singleton.getInstance();
		Singleton instance2 = Singleton.getInstance();
		System.out.println(instance == instance2); // true
		System.out.println("instance.hashCode=" + instance.hashCode());
		System.out.println("instance2.hashCode=" + instance2.hashCode());
	}

}

class Singleton {
	private static Singleton instance;
	
	private Singleton() {}
	
	//提供一个静态的公有方法,当使用到该方法时,才去创建 instance
	//即懒汉式
	public static Singleton getInstance() {
		if(instance == null) {
			instance = new Singleton();
		}
		return instance;
	}
}

优缺点说明:
1、起到了Lazy Loading的效果,但是只能在单线程下使用。
2)、如果在多线程下,一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例。所以在多线程环境下不可使用这种方式
3)、结论:在实际开发中,不要使用这种方式.

懒汉式(线程安全,同步方法)

代码:

package com.atguigu.singleton.type4;


public class SingletonTest04 {

	public static void main(String[] args) {
		System.out.println("懒汉式2 , 线程安全~");
		Singleton instance = Singleton.getInstance();
		Singleton instance2 = Singleton.getInstance();
		System.out.println(instance == instance2); // true
		System.out.println("instance.hashCode=" + instance.hashCode());
		System.out.println("instance2.hashCode=" + instance2.hashCode());
	}

}

// 懒汉式(线程安全,同步方法)
class Singleton {
	private static Singleton instance;
	
	private Singleton() {}
	
	//提供一个静态的公有方法,加入同步处理的代码,解决线程安全问题
	//即懒汉式
	public static synchronized Singleton getInstance() {
		if(instance == null) {
			instance = new Singleton();
		}
		return instance;
	}
}

优缺点说明:
1、解决了线程不安全问题
2)、效率太低了,每个线程在想获得类的实例时候,执行getInstance()方法都要进行同步。而其实这个方法只执行一次实例化代码就够了,后面的想获得该类实例,直接return就行了。方法进行同步效率太低
3)、结论:在实际开发中,不推荐使用这种方式

懒汉式(线程安全,同步代码块)

代码:

package singleton.type6;


public class SingletonTest06 {

	public static void main(String[] args) {
		System.out.println("双重检查");
		Singleton instance = Singleton.getInstance();
		Singleton instance2 = Singleton.getInstance();
		System.out.println(instance == instance2); // true
		System.out.println("instance.hashCode=" + instance.hashCode());
		System.out.println("instance2.hashCode=" + instance2.hashCode());
		
	}

}

// 懒汉式(线程安全,同步方法)
class Singleton {
	private static volatile Singleton instance;
	
	private Singleton() {}

	
	public static synchronized Singleton getInstance() {
		if(instance == null) {
			synchronized (Singleton.class) {				
				instance = new Singleton();				
			}
			
		}
		return instance;
	}
}

优缺点:
1、这种方式,本意是想对第四种实现方式的改进,因为前面同步方法效率太低,改为同步产生实例化的的代码块
2)、但是这种同步并不能起到线程同步的作用。跟第3种实现方式遇到的情形一致,假如一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例
3)、结论:在实际开发中,不能使用这种方式

双重检查

代码:

package singleton.type6;


public class SingletonTest06 {

	public static void main(String[] args) {
		System.out.println("双重检查");
		Singleton instance = Singleton.getInstance();
		Singleton instance2 = Singleton.getInstance();
		System.out.println(instance == instance2); // true
		System.out.println("instance.hashCode=" + instance.hashCode());
		System.out.println("instance2.hashCode=" + instance2.hashCode());
		
	}

}

// 懒汉式(线程安全,同步方法)
class Singleton {
	private static volatile Singleton instance;
	
	private Singleton() {}
	
	//提供一个静态的公有方法,加入双重检查代码,解决线程安全问题, 同时解决懒加载问题
	//同时保证了效率, 推荐使用
	
	public static synchronized Singleton getInstance() {
		if(instance == null) {
			synchronized (Singleton.class) {
				if(instance == null) {
					instance = new Singleton();
				}
			}
			
		}
		return instance;
	}
}

优缺点说明:
1、Double-Check概念是多线程开发中常使用到的,如代码中所示,我们进行了两次if (singleton == null)检查,这样就可以保证线程安全了。
2、 这样,实例化代码只用执行一次,后面再次访问时,判断if(singleton == null),直接return实例化对象,也避免的反复进行方法同步.
3、 线程安全;延迟加载;效率较高
4、 结论:在实际开发中,推荐使用这种单例设计模式

静态内部类

代码:

package singleton.type7;


public class SingletonTest07 {

	public static void main(String[] args) {
		System.out.println("使用静态内部类完成单例模式");
		Singleton instance = Singleton.getInstance();
		Singleton instance2 = Singleton.getInstance();
		System.out.println(instance == instance2); // true
		System.out.println("instance.hashCode=" + instance.hashCode());
		System.out.println("instance2.hashCode=" + instance2.hashCode());
		
	}

}

// 静态内部类完成, 推荐使用
class Singleton {
	private static volatile Singleton instance;
	
	//构造器私有化
	private Singleton() {}
	
	//写一个静态内部类,该类中有一个静态属性 Singleton
	private static class SingletonInstance {
		private static final Singleton INSTANCE = new Singleton(); 
	}
	
	//提供一个静态的公有方法,直接返回SingletonInstance.INSTANCE
	
	public static synchronized Singleton getInstance() {
		
		return SingletonInstance.INSTANCE;
	}
}

优缺点说明:
1、 这种方式采用了类装载的机制来保证初始化实例时只有一个线程。
2、 静态内部类方式在Singleton类被装载时并不会立即实例化,而是在需要实例化时,调用getInstance方法,才会装载SingletonInstance类,从而完成Singleton的实例化。
3、 类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM帮助我们保证了线程的安全性,在类进行初始化时,别的线程是无法进入的。
4、 优点:避免了线程不安全,利用静态内部类特点实现延迟加载,效率高
5、 结论:推荐使用.

枚举

代码:

package com.atguigu.singleton.type8;

public class SingletonTest08 {
	public static void main(String[] args) {
		Singleton instance = Singleton.INSTANCE;
		Singleton instance2 = Singleton.INSTANCE;
		System.out.println(instance == instance2);
		
		System.out.println(instance.hashCode());
		System.out.println(instance2.hashCode());
		
		instance.sayOK();
	}
}

//使用枚举,可以实现单例, 推荐
enum Singleton {
	INSTANCE; //属性
	public void sayOK() {
		System.out.println("ok~");
	}
}

优缺点说明:
1、 这借助JDK1.5中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而
且还能防止反序列化重新创建新的对象。
2、 这种方式是Effective Java作者Josh Bloch 提倡的方式
3、 结论:推荐使用

单例模式在JDK 应用的源码分析

单例模式在JDK 应用的源码分析

  1. 在JDK中,java.lang.Runtime就是经典的单例模式(饿汉式)
  2. 代码分析+Debug源码+代码说明


package java.lang;

import java.io.*;
import java.util.StringTokenizer;
import sun.reflect.CallerSensitive;
import sun.reflect.Reflection;

/**
 * Every Java application has a single instance of class
 * <code>Runtime</code> that allows the application to interface with
 * the environment in which the application is running. The current
 * runtime can be obtained from the <code>getRuntime</code> method.
 * <p>
 * An application cannot create its own instance of this class.
 *
 * @author  unascribed
 * @see     java.lang.Runtime#getRuntime()
 * @since   JDK1.0
 */

public class Runtime {
    private static Runtime currentRuntime = new Runtime();

    /**
     * Returns the runtime object associated with the current Java application.
     * Most of the methods of class <code>Runtime</code> are instance
     * methods and must be invoked with respect to the current runtime object.
     *
     * @return  the <code>Runtime</code> object associated with the current
     *          Java application.
     */
    public static Runtime getRuntime() {
        return currentRuntime;
    }

    /** Don't let anyone else instantiate this class */
    private Runtime() {}


单例模式注意事项和细节说明

1、 单例模式保证了 系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能
2、 当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用new
3、 单例模式使用的场景:需要频繁的进行创建和销毁的对象、创建对象时耗时过多或耗费资源过多(即:重量级对象),但又经常用到的对象、工具类对象、频繁访问数据库或文件的对象(比如数据源、session工厂等)

工厂模式

简单工厂模式

  • 具体的需求
    看一个披萨的项目:要便于披萨种类的扩展,要便于维护
  1. 披萨的种类很多(比如 GreekPizz、CheesePizz 等)
  2. 披萨的制作有 prepare,bake, cut, box
  3. 完成披萨店订购功能。
  • 使用传统的方法
    类图:
    7.png
    通过编写OrderPizza.java订购各种的Pizza。
    代码:
public class OrderPizza {

	// 构造器
	public OrderPizza() {
		Pizza pizza = null;
		String orderType; // 订购披萨的类型
		do {
			orderType = getType();
			if (orderType.equals("greek")) {
				pizza = new GreekPizza();
				pizza.setName(" 希腊披萨 ");
			} else if (orderType.equals("cheese")) {
				pizza = new CheesePizza();
				pizza.setName(" 奶酪披萨 ");
			} else if (orderType.equals("pepper")) {
				pizza = new PepperPizza();
				pizza.setName("胡椒披萨");
			} else {
				break;
			}
			//输出pizza 制作过程
			pizza.prepare();
			pizza.bake();
			pizza.cut();
			pizza.box();
			
		} while (true);
	}
  • 优缺点分析
    1、有点是比较好理解,简单易操作
    2、缺点是违反了设计模式的ocp原则,即对扩展开放,对修改关闭。即当我们给类新增新功能时,尽量不修改代码,或者少修改代码
    3、比如这时需要新增一个Pizza的种类,则需要对种类的判断 if -- else 进行修改。
    4、改进思路
    分析:修改代码可以接受,但是如果我们在其它的地方也有创建Pizza的代码,就意味
    着,也需要修改,而创建Pizza的代码,往往有多处。
    思路:把创建Pizza对象封装到一个类中,这样我们有新的Pizza种类时,只需要修改该
    类就可,其它有创建到Pizza对象的代码就不需要修改了. 简单工厂模式

  • 简单工厂模式基本介绍
    1、简单工厂模式是属于创建型模式,是工厂模式的一种。简单工厂模式是由一
    个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族
    中最简单实用的模式
    2、 简单工厂模式:定义了一个创建对象的类,由这个类来封装实例化对象的行
    为(代码)
    3)、在软件开发中,当我们会用到大量的创建某种、某类或者某批对象时,就会
    使用到工厂模式.

  • 通过简单工厂模式对以上的问题进行设计:
    类图:
    7.png
    代码:

//简单工厂类
public class SimpleFactory {

	//更加orderType 返回对应的Pizza 对象
	public Pizza createPizza(String orderType) {

		Pizza pizza = null;

		System.out.println("使用简单工厂模式");
		if (orderType.equals("greek")) {
			pizza = new GreekPizza();
			pizza.setName(" 希腊披萨 ");
		} else if (orderType.equals("cheese")) {
			pizza = new CheesePizza();
			pizza.setName(" 奶酪披萨 ");
		} else if (orderType.equals("pepper")) {
			pizza = new PepperPizza();
			pizza.setName("胡椒披萨");
		}
		
		return pizza;
	}
	
	//简单工厂模式 也叫 静态工厂模式 
	
	public static Pizza createPizza2(String orderType) {

		Pizza pizza = null;

		System.out.println("使用简单工厂模式2");
		if (orderType.equals("greek")) {
			pizza = new GreekPizza();
			pizza.setName(" 希腊披萨 ");
		} else if (orderType.equals("cheese")) {
			pizza = new CheesePizza();
			pizza.setName(" 奶酪披萨 ");
		} else if (orderType.equals("pepper")) {
			pizza = new PepperPizza();
			pizza.setName("胡椒披萨");
		}
		
		return pizza;
	}

}

public class OrderPizza2 {

	Pizza pizza = null;
	String orderType = "";
	// 构造器
	public OrderPizza2() {
		
		do {
			orderType = getType();
			pizza = SimpleFactory.createPizza2(orderType);

			// 输出pizza
			if (pizza != null) { // 订购成功
				pizza.prepare();
				pizza.bake();
				pizza.cut();
				pizza.box();
			} else {
				System.out.println(" 订购披萨失败 ");
				break;
			}
		} while (true);
	}

	// 写一个方法,可以获取客户希望订购的披萨种类
	private String getType() {
		try {
			BufferedReader strin = new BufferedReader(new InputStreamReader(System.in));
			System.out.println("input pizza 种类:");
			String str = strin.readLine();
			return str;
		} catch (IOException e) {
			e.printStackTrace();
			return "";
		}
	}
}

这样,当新增一个类型时,只需要修改简单工厂里面的方法即可。

工厂方法模式

  • 新需求:
    披萨项目新的需求:客户在点披萨时,可以点不同口味的披萨,比如 北京的奶酪pizza、
    北京的胡椒pizza 或者是伦敦的奶酪pizza、伦敦的胡椒pizza。

  • 思路
    1、使用简单工厂模式,创建不同的简单工厂类,比如BJPizzaSimpleFactory、
    LDPizzaSimpleFactory 等等.从当前这个案例来说,也是可以的,但是考虑到项目的
    规模,以及软件的可维护性、可扩展性并不是特别好
    2、使用工厂方法模式

  • 工厂方法模式介绍
    1、工厂方法模式设计方案:将披萨项目的实例化功能抽象成抽象方法,在不同的口味点
    餐子类中具体实现。
    2、工厂方法模式:定义了一个创建对象的抽象方法,由子类决定要实例化的类。工厂方
    法模式将对象的实例化推迟到子类。

  • 应用案例
    1、披萨项目新的需求:客户在点披萨时,可以点不同口味的披萨,比如 北京的奶酪
    pizza、北京的胡椒pizza 或者是伦敦的奶酪pizza、伦敦的胡椒pizza
    2、类图分析
    7.png
    创建一个OrderPizza的抽象类,让生产Pizza的工厂继承它,各自实现自己的生产模式,这样当新增不同地区不同种类的Pizza时,只需要新增类继承即可。
    3、代码:

public abstract class OrderPizza {

	//定义一个抽象方法,createPizza , 让各个工厂子类自己实现
	abstract Pizza createPizza(String orderType);
	
	// 构造器
	public OrderPizza() {
		Pizza pizza = null;
		String orderType; // 订购披萨的类型
		do {
			orderType = getType();
			pizza = createPizza(orderType); //抽象方法,由工厂子类完成
			//输出pizza 制作过程
			pizza.prepare();
			pizza.bake();
			pizza.cut();
			pizza.box();
			
		} while (true);
	}

	

	// 写一个方法,可以获取客户希望订购的披萨种类
	private String getType() {
		try {
			BufferedReader strin = new BufferedReader(new InputStreamReader(System.in));
			System.out.println("input pizza 种类:");
			String str = strin.readLine();
			return str;
		} catch (IOException e) {
			e.printStackTrace();
			return "";
		}
	}

}

public class BJOrderPizza extends OrderPizza {

	
	@Override
	Pizza createPizza(String orderType) {
	
		Pizza pizza = null;
		if(orderType.equals("cheese")) {
			pizza = new BJCheesePizza();
		} else if (orderType.equals("pepper")) {
			pizza = new BJPepperPizza();
		}
		// TODO Auto-generated method stub
		return pizza;
	}

}


public class LDOrderPizza extends OrderPizza {

	
	@Override
	Pizza createPizza(String orderType) {
	
		Pizza pizza = null;
		if(orderType.equals("cheese")) {
			pizza = new LDCheesePizza();
		} else if (orderType.equals("pepper")) {
			pizza = new LDPepperPizza();
		}
		// TODO Auto-generated method stub
		return pizza;
	}

}

抽象工厂模式

  • 基本介绍
  1. 抽象工厂模式:定义了一个interface用于创建相关或有依赖关系的对象簇,而无需
    指明具体的类
  2. 抽象工厂模式可以将简单工厂模式和工厂方法模式进行整合。
  3. 从设计层面看,抽象工厂模式就是对简单工厂模式的改进(或者称为进一步的抽象)。
  4. 将工厂抽象成两层,AbsFactory(抽象工厂) 和 具体实现的工厂子类。程序员可以
    根据创建对象类型使用对应的工厂子类。这样将单个的简单工厂类变成了工厂簇,
    更利于代码的维护和扩展。
  5. 类图
    7.png
    使用抽象工厂模式完成披萨项目:
//一个抽象工厂模式的抽象层(接口)
public interface AbsFactory {
	//让下面的工厂子类来 具体实现
	public Pizza createPizza(String orderType);
}

//这是工厂子类
public class BJFactory implements AbsFactory {

	@Override
	public Pizza createPizza(String orderType) {
		System.out.println("~使用的是抽象工厂模式~");
		// TODO Auto-generated method stub
		Pizza pizza = null;
		if(orderType.equals("cheese")) {
			pizza = new BJCheesePizza();
		} else if (orderType.equals("pepper")){
			pizza = new BJPepperPizza();
		}
		return pizza;
	}

}

public class LDFactory implements AbsFactory {

	@Override
	public Pizza createPizza(String orderType) {
		System.out.println("~使用的是抽象工厂模式~");
		Pizza pizza = null;
		if (orderType.equals("cheese")) {
			pizza = new LDCheesePizza();
		} else if (orderType.equals("pepper")) {
			pizza = new LDPepperPizza();
		}
		return pizza;
	}

}

public class OrderPizza {

	AbsFactory factory;

	// 构造器
	public OrderPizza(AbsFactory factory) {
		setFactory(factory);
	}

	private void setFactory(AbsFactory factory) {
		Pizza pizza = null;
		String orderType = ""; // 用户输入
		this.factory = factory;
		do {
			orderType = getType();
			// factory 可能是北京的工厂子类,也可能是伦敦的工厂子类
			pizza = factory.createPizza(orderType);
			if (pizza != null) { // 订购ok
				pizza.prepare();
				pizza.bake();
				pizza.cut();
				pizza.box();
			} else {
				System.out.println("订购失败");
				break;
			}
		} while (true);
	}

	// 写一个方法,可以获取客户希望订购的披萨种类
	private String getType() {
		try {
			BufferedReader strin = new BufferedReader(new InputStreamReader(System.in));
			System.out.println("input pizza 种类:");
			String str = strin.readLine();
			return str;
		} catch (IOException e) {
			e.printStackTrace();
			return "";
		}
	}
}

工厂模式在JDK-Calendar应用的源码

  1. JDK 中的Calendar类中,就使用了简单工厂模式
  2. 源码分析+Debug源码+说明
    源码部分:
public class SimpleFactory {
  public static void main(String[] args) {
    Calendar cal = Calendar.getInstance();
    // 注意月份下标从0开始,所以取月份要+1
    System.out.println("年:" + cal.get(Calendar.YEAR));
    System.out.println("月:" + (cal.get(Calendar.MONTH) + 1)); 
    System.out.println("日:" + cal.get(Calendar.DAY_OF_MONTH));
    System.out.println("时:" + cal.get(Calendar.HOUR_OF_DAY));
    System.out.println("分:" + cal.get(Calendar.MINUTE));
    System.out.println("秒:" + cal.get(Calendar.SECOND));
  }
}

    public static Calendar getInstance(TimeZone zone,
                                       Locale aLocale)
    {
        return createCalendar(zone, aLocale);
    }

    private static Calendar createCalendar(TimeZone zone,
                                           Locale aLocale)
    {
        CalendarProvider provider =
            LocaleProviderAdapter.getAdapter(CalendarProvider.class, aLocale)
                                 .getCalendarProvider();
        if (provider != null) {
            try {
                return provider.getInstance(zone, aLocale);
            } catch (IllegalArgumentException iae) {
                // fall back to the default instantiation
            }
        }

        Calendar cal = null;

        if (aLocale.hasExtensions()) {
            String caltype = aLocale.getUnicodeLocaleType("ca");
            if (caltype != null) {
                switch (caltype) {
                case "buddhist":
                cal = new BuddhistCalendar(zone, aLocale);
                    break;
                case "japanese":
                    cal = new JapaneseImperialCalendar(zone, aLocale);
                    break;
                case "gregory":
                    cal = new GregorianCalendar(zone, aLocale);
                    break;
                }
            }
        }
        if (cal == null) {
            // If no known calendar type is explicitly specified,
            // perform the traditional way to create a Calendar:
            // create a BuddhistCalendar for th_TH locale,
            // a JapaneseImperialCalendar for ja_JP_JP locale, or
            // a GregorianCalendar for any other locales.
            // NOTE: The language, country and variant strings are interned.
            if (aLocale.getLanguage() == "th" && aLocale.getCountry() == "TH") {
                cal = new BuddhistCalendar(zone, aLocale);
            } else if (aLocale.getVariant() == "JP" && aLocale.getLanguage() == "ja"
                       && aLocale.getCountry() == "JP") {
                cal = new JapaneseImperialCalendar(zone, aLocale);
            } else {
                cal = new GregorianCalendar(zone, aLocale);
            }
        }
        return cal;
    }

工厂模式小结

  1. 工厂模式的意义
    将实例化对象的代码提取出来,放到一个类中统一管理和维护,达到和主项目的
    依赖关系的解耦。从而提高项目的扩展和维护性。
  2. 三种工厂模式 (简单工厂模式、工厂方法模式、抽象工厂模式)
  3. 设计模式的依赖抽象原则
    a、 创建对象实例时,不要直接 new 类, 而是把这个new 类的动作放在一个工厂的方法
    中,并返回。有的书上说,变量不要直接持有具体类的引用。
    b、不要让类继承具体类,而是继承抽象类或者是实现interface(接口)
    c、 不要覆盖基类中已经实现的方法。

原型模式

  • 问题引出:克隆羊问题
    现在有一只羊Tom,年龄为:1岁,颜色为:白色,编写程序创建和tom羊属性完全一样的10只羊。

  • 传统方法解决方案
    思路:先创建名字为Tom的羊,然后再创建(new)出其他得养,赋予Tom的属性。
    代码:

package com.fz.prototype;

public class Client {

	public static void main(String[] args) {
		//传统的方法
		Sheep sheep = new Sheep("tom", 1, "白色");
		
		Sheep sheep2 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor());
		Sheep sheep3 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor());
		Sheep sheep4 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor());
		Sheep sheep5 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor());
		//....
		
		System.out.println(sheep);
		System.out.println(sheep2);
		System.out.println(sheep3);
		System.out.println(sheep4);
		System.out.println(sheep5);
		//...
	}

}

  • 传统方法的优缺点
    1、优点很好理解,简单操作
    2、在创建新的对象时,总是需要重新获取原始对象的值,如果是比较复杂的对象,效率较低
    3、总是不断的重新初始化对象,而不是动态的获取对象运行时的状态,不够灵活
    4、改进思路:
    Java中Object类是所有类的根类,Object类提供了clone()方法,该方法可以讲Java对象复制一分,但是需要实现clone的Java类必须实现一个接口Cloneable,该接口表示该类能够复制且具有复制的能力 ==>> 原型模式

  • 原型模式基本介绍
    1、 原型模式(Prototype模式)是指:用原型实例指定创建对象的种类,并且通过拷贝这些原型,创建新的对象
    2、 原型模式是一种创建型设计模式,允许一个对象再创建另外一个可定制的对象,无需知道如何创建的细节
    3、 工作原理是:通过将一个原型对象传给那个要发动创建的对象,这个要发动创建的对象通过请求原型对象拷贝它们自己来实施创建,即 对象.clone()
    4、 形象的理解:孙大圣拔出猴毛, 变出其它孙大圣

  • 原型模式UML类图
    7.png

  • 结构说明
    1、 Prototype : 原型类,声明一个克隆自己的接口
    2、 ConcretePrototype: 具体的原型类, 实现一个克隆自己的操作
    3、 Client: 让一个原型对象克隆自己,从而创建一个新的对象(属性一样)

  • 原型模式解决克隆羊问题的应用实例
    使用原型模式改进传统方式,让程序具有更高的效率和扩展性。
    代码:


public class Sheep implements Cloneable {
	private String name;
	private int age;
	private String color;
	private String address = "蒙古羊";
	public Sheep friend; //是对象, 克隆是会如何处理
	public Sheep(String name, int age, String color) {
		super();
		this.name = name;
		this.age = age;
		this.color = color;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public int getAge() {
		return age;
	}
	public void setAge(int age) {
		this.age = age;
	}
	public String getColor() {
		return color;
	}
	public void setColor(String color) {
		this.color = color;
	}
	
	
	
	@Override
	public String toString() {
		return "Sheep [name=" + name + ", age=" + age + ", color=" + color + ", address=" + address + "]";
	}
	//克隆该实例,使用默认的clone方法来完成
	@Override
	protected Object clone()  {
		
		Sheep sheep = null;
		try {
			sheep = (Sheep)super.clone();
		} catch (Exception e) {
			// TODO: handle exception
			System.out.println(e.getMessage());
		}
		// TODO Auto-generated method stub
		return sheep;
	}
	
	
}


public class Client {

	public static void main(String[] args) {
		System.out.println("原型模式完成对象的创建");
		// TODO Auto-generated method stub
		Sheep sheep = new Sheep("tom", 1, "白色");
		
		sheep.friend = new Sheep("jack", 2, "黑色");
		
		Sheep sheep2 = (Sheep)sheep.clone(); //克隆
		Sheep sheep3 = (Sheep)sheep.clone(); //克隆
		Sheep sheep4 = (Sheep)sheep.clone(); //克隆
		Sheep sheep5 = (Sheep)sheep.clone(); //克隆
		
		System.out.println("sheep2 =" + sheep2 + "sheep2.friend=" + sheep2.friend.hashCode());
		System.out.println("sheep3 =" + sheep3 + "sheep3.friend=" + sheep3.friend.hashCode());
		System.out.println("sheep4 =" + sheep4 + "sheep4.friend=" + sheep4.friend.hashCode());
		System.out.println("sheep5 =" + sheep5 + "sheep5.friend=" + sheep5.friend.hashCode());
	}

}

  • 原型模式在Spring框架中的使用分析
    1、Spring中原型bean的创建,就是原型模式的应用
    2、代码分析:
    8.png

  • 深入讨论-浅拷贝和深拷贝
    1、浅拷贝的介绍
    a、对于数据类型是基本数据类型的成员变量,浅拷贝会直接进行值传递,也就是将该属性值复制一份给新的对象。
    b、 对于数据类型是引用数据类型的成员变量,比如说成员变量是某个数组、某个类的对象等,那么浅拷贝会进行引用传递,也就是只是将该成员变量的引用值(内存地址)复制一份给新的对象。因为实际上两个对象的该成员变量都指向同一个实例。在这种情况下,在一个对象中修改该成员变量会影响到另一个对象的该成员变量值
    c、 前面我们克隆羊就是浅拷贝
    5、 浅拷贝是使用默认的 clone()方法来实现sheep = (Sheep) super.clone();

2、深拷贝基本介绍
a、复制对象的所有基本数据类型的成员变量值
b、 为所有引用数据类型的成员变量申请存储空间,并复制每个引用数据类型成员变量所引用的对象,直到该对象可达的所有对象。也就是说,对象进行深拷贝要对整个对象进行拷贝
c、 深拷贝实现方式1:重写clone方法来实现深拷贝
d、 深拷贝实现方式2:通过对象序列化实现深拷贝(推荐)

  • 深拷贝应用实例
    1、 使用 重写clone方法实现深拷贝
    2、 使用序列化来实现深拷贝
    3、代码演示
public class DeepCloneableTarget implements Serializable, Cloneable {
	
	/**
	 * 
	 */
	private static final long serialVersionUID = 1L;

	private String cloneName;

	private String cloneClass;

	//构造器
	public DeepCloneableTarget(String cloneName, String cloneClass) {
		this.cloneName = cloneName;
		this.cloneClass = cloneClass;
	}

	//因为该类的属性,都是String , 因此我们这里使用默认的clone完成即可
	@Override
	protected Object clone() throws CloneNotSupportedException {
		return super.clone();
	}
}

public class DeepProtoType implements Serializable, Cloneable{
	
	public String name; //String 属性
	public DeepCloneableTarget deepCloneableTarget;// 引用类型
	public DeepProtoType() {
		super();
	}
	
	
	//深拷贝 - 方式 1 使用clone 方法
	@Override
	protected Object clone() throws CloneNotSupportedException {
		
		Object deep = null;
		//这里完成对基本数据类型(属性)和String的克隆
		deep = super.clone(); 
		//对引用类型的属性,进行单独处理
		DeepProtoType deepProtoType = (DeepProtoType)deep;
		deepProtoType.deepCloneableTarget  = (DeepCloneableTarget)deepCloneableTarget.clone();
		
		// TODO Auto-generated method stub
		return deepProtoType;
	}
	
	//深拷贝 - 方式2 通过对象的序列化实现 (推荐)
	
	public Object deepClone() {
		
		//创建流对象
		ByteArrayOutputStream bos = null;
		ObjectOutputStream oos = null;
		ByteArrayInputStream bis = null;
		ObjectInputStream ois = null;
		
		try {
			
			//序列化
			bos = new ByteArrayOutputStream();
			oos = new ObjectOutputStream(bos);
			oos.writeObject(this); //当前这个对象以对象流的方式输出
			
			//反序列化
			bis = new ByteArrayInputStream(bos.toByteArray());
			ois = new ObjectInputStream(bis);
			DeepProtoType copyObj = (DeepProtoType)ois.readObject();
			
			return copyObj;
			
		} catch (Exception e) {
			// TODO: handle exception
			e.printStackTrace();
			return null;
		} finally {
			//关闭流
			try {
				bos.close();
				oos.close();
				bis.close();
				ois.close();
			} catch (Exception e2) {
				// TODO: handle exception
				System.out.println(e2.getMessage());
			}
		}
		
	}
	
}


public class Client {

	public static void main(String[] args) throws Exception {
		// TODO Auto-generated method stub
		DeepProtoType p = new DeepProtoType();
		p.name = "宋江";
		p.deepCloneableTarget = new DeepCloneableTarget("大牛", "小牛");
		
		//方式1 完成深拷贝
		
//		DeepProtoType p2 = (DeepProtoType) p.clone();
//		
//		System.out.println("p.name=" + p.name + "p.deepCloneableTarget=" + p.deepCloneableTarget.hashCode());
//		System.out.println("p2.name=" + p.name + "p2.deepCloneableTarget=" + p2.deepCloneableTarget.hashCode());
	
		//方式2 完成深拷贝
		DeepProtoType p2 = (DeepProtoType) p.deepClone();
		
		System.out.println("p.name=" + p.name + "p.deepCloneableTarget=" + p.deepCloneableTarget.hashCode());
		System.out.println("p2.name=" + p.name + "p2.deepCloneableTarget=" + p2.deepCloneableTarget.hashCode());
	
	}

}
  • 原型模式的注意事项和细节
    1、 创建新的对象比较复杂时,可以利用原型模式简化对象的创建过程,同时也能够提高效率
    2、 不用重新初始化对象,而是动态地获得对象运行时的状态
    3、 如果原始对象发生变化(增加或者减少属性),其它克隆对象的也会发生相应的变化,无需修改代码
    4、 在实现深克隆的时候可能需要比较复杂的代码
    5、 缺点:需要为每一个类配备一个克隆方法,这对全新的类来说不是很难,但对已有
    的类进行改造时,需要修改其源代码,违背了ocp原则,这点请同学们注意.

建造者模式

  • 需求
    盖房项目需求
    1、 需要建房子:这一过程为打桩、砌墙、封顶
    2、 房子有各种各样的,比如普通房,高楼,别墅,各种房子的过程虽然一样,但是要求不要相同的.
    3、 请编写程序,完成需求.

  • 传统方式解决盖房需求
    1、思路分析
    批注 20200416 225354.png
    2、代码

public abstract class AbstractHouse {	
	public abstract void buildBasic();
	
	public abstract void buildWalls();

	public abstract void roofed();
	
	public void build() {
		buildBasic();
		buildWalls();
		roofed();
	}
}

public class CommonHouse extends AbstractHouse {
	@Override
	public void buildBasic() {
		// TODO Auto-generated method stub
		System.out.println(" 普通房子打地基 ");
	}

	@Override
	public void buildWalls() {
		// TODO Auto-generated method stub
		System.out.println(" 普通房子砌墙 ");
	}

	@Override
	public void roofed() {
		// TODO Auto-generated method stub
		System.out.println(" 普通房子封顶 ");
	}
}

public class Client {
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		CommonHouse commonHouse = new CommonHouse();
		commonHouse.build();
	}
}

3、问题分析
a、优点是比较好理解,简单易操作。
b、 设计的程序结构,过于简单,没有设计缓存层对象,程序的扩展和维护不好. 也就是说,这种设计方案,把产品(即:房子) 和 创建产品的过程(即:建房子流程) 封装在一起,耦合性增强了。
c、 解决方案:将产品和产品建造过程解耦 => 建造者模式.

  • 建造者模式基本介绍
    1、 建造者模式(Builder Pattern) 又叫生成器模式,是一种对象构建模式。它可以将复杂对象的建造过程抽象出来(抽象类别),使这个抽象过程的不同实现方法可以构造出不同表现(属性)的对象。
    2、 建造者模式 是一步一步创建一个复杂的对象,它允许用户只通过指定复杂对象的类型和内容就可以构建它们,用户不需要知道内部
    的具体构建细节。

  • 建造者模式的四个角色
    1、 Product(产品角色): 一个具体的产品对象。
    2、 Builder(抽象建造者): 创建一个Product对象的各个部件指定的 接口/抽象类。
    3、 ConcreteBuilder(具体建造者): 实现接口,构建和装配各个部件。
    4、 Director(指挥者): 构建一个使用Builder接口的对象。它主要是用于创建一个复杂的对象。它主要有两个作用,一是:隔离了客户与对象的生产过程,二是:负责控制产品对象的生产过程。

  • 原理类图
    批注 20200416 225354.png

  • 建造者模式解决盖房需求应用实例
    1、 需要建房子:这一过程为打桩、砌墙、封顶。不管是普通房子也好,别墅也好都
    需要经历这些过程,下面我们使用建造者模式(Builder Pattern)来完成
    2、 思路分析图解(类图)
    批注 20200416 225354.png

  1. 代码实现
public class Client {
	public static void main(String[] args) {
		
		//盖普通房子
		CommonHouse commonHouse = new CommonHouse();
		//准备创建房子的指挥者
		HouseDirector houseDirector = new HouseDirector(commonHouse);
		
		//完成盖房子,返回产品(普通房子)
		House house = houseDirector.constructHouse();
		
		//System.out.println("输出流程");
		
		System.out.println("--------------------------");
		//盖高楼
		HighBuilding highBuilding = new HighBuilding();
		//重置建造者
		houseDirector.setHouseBuilder(highBuilding);
		//完成盖房子,返回产品(高楼)
		houseDirector.constructHouse();	
		
	}
}

public class CommonHouse extends HouseBuilder {

	@Override
	public void buildBasic() {
		// TODO Auto-generated method stub
		System.out.println(" 普通房子打地基5米 ");
	}

	@Override
	public void buildWalls() {
		// TODO Auto-generated method stub
		System.out.println(" 普通房子砌墙10cm ");
	}

	@Override
	public void roofed() {
		// TODO Auto-generated method stub
		System.out.println(" 普通房子屋顶 ");
	}

}

public class HighBuilding extends HouseBuilder {

	@Override
	public void buildBasic() {
		// TODO Auto-generated method stub
		System.out.println(" 高楼的打地基100米 ");
	}

	@Override
	public void buildWalls() {
		// TODO Auto-generated method stub
		System.out.println(" 高楼的砌墙20cm ");
	}

	@Override
	public void roofed() {
		// TODO Auto-generated method stub
		System.out.println(" 高楼的透明屋顶 ");
	}

}

public class House {
	private String baise;
	private String wall;
	private String roofed;
	public String getBaise() {
		return baise;
	}
	public void setBaise(String baise) {
		this.baise = baise;
	}
	public String getWall() {
		return wall;
	}
	public void setWall(String wall) {
		this.wall = wall;
	}
	public String getRoofed() {
		return roofed;
	}
	public void setRoofed(String roofed) {
		this.roofed = roofed;
	}
	
}


// 抽象的建造者
public abstract class HouseBuilder {

	protected House house = new House();
	
	//将建造的流程写好, 抽象的方法
	public abstract void buildBasic();
	public abstract void buildWalls();
	public abstract void roofed();
	
	//建造房子好, 将产品(房子) 返回
	public House buildHouse() {
		return house;
	}
	
}


//指挥者,这里去指定制作流程,返回产品
public class HouseDirector {
	
	HouseBuilder houseBuilder = null;

	//构造器传入 houseBuilder
	public HouseDirector(HouseBuilder houseBuilder) {
		this.houseBuilder = houseBuilder;
	}

	//通过setter 传入 houseBuilder
	public void setHouseBuilder(HouseBuilder houseBuilder) {
		this.houseBuilder = houseBuilder;
	}
	
	//如何处理建造房子的流程,交给指挥者
	public House constructHouse() {
		houseBuilder.buildBasic();
		houseBuilder.buildWalls();
		houseBuilder.roofed();
		return houseBuilder.buildHouse();
	}
	
}
  • 建造者模式在JDK的应用和源码分析
    1、 java.lang.StringBuilder中的建造者模式
    2、 代码说明+Debug源码批注 20200416 225354.png
    3、源码中建造者模式角色分析
    a、 Appendable 接口定义了多个append方法(抽象方法), 即Appendable 为抽象建造者, 定义了抽象方法
    b、 AbstractStringBuilder 实现了 Appendable 接口方法,这里的AbstractStringBuilder 已经是建造者,只是不能实例化
    c、 StringBuilder 即充当了指挥者角色,同时充当了具体的建造者,建造方法的实现是由 AbstractStringBuilder 完成, 而StringBuilder 继承了AbstractStringBuilder

  • 建造者模式的注意事项和细节
    1、 客户端(使用程序)不必知道产品内部组成的细节,将产品本身与产品的创建过程解耦,使得相同的创建过程可以创建不同的产品对象
    2、 每一个具体建造者都相对独立,而与其他的具体建造者无关,因此可以很方便地替换具体建造者或增加新的具体建造者, 用户使用不同的具体建造者即可得到不同的产品对象
    3、 可以更加精细地控制产品的创建过程 。将复杂产品的创建步骤分解在不同的方法中,使得创建过程更加清晰,也更方便使用程序来控制创建过程
    4、 增加新的具体建造者无须修改原有类库的代码,指挥者类针对抽象建造者类编程,系统扩展方便,符合 “开闭原则”
    5、 建造者模式所创建的产品一般具有较多的共同点,其组成部分相似,如果产品之间的差异性很大,则不适合使用建造者模式,因此其使用范围受到一定的限制。
    6、 如果产品的内部变化复杂,可能会导致需要定义很多具体建造者类来实现这种变化,导致系统变得很庞大,因此在这种情况下,要考虑是否选择建造者模式.
    7、 抽象工厂模式VS建造者模式
    抽象工厂模式实现对产品家族的创建,一个产品家族是这样的一系列产品:具有不同分类维度的产品组合,采用抽象工厂模式不需要关心构建过程,只关心什么产品由什么工厂生产即可。而建造者模式则是要求按照指定的蓝图建造产品,它的主要目的是通过组装零配件而产生一个新产品